counters

Kamis, 31 Oktober 2013

KOMPLEMEN 1 DAN 2 FULL ADDER AND HALF ADDER

Komplemen 1 Dan 2 Dan Binary

Dalam komputer terdapat dua buah cara merepresentasikan nilai negatif, yaitu komplemen satu (ones complement) dan komplemen dua (twos complement).
Komplemen satu merupakan suatu sistem penomoran yang diterapkan dalam beberapa jenis komputer untuk merepresentasikan nilai-nilai negatif. Pada cara ini terdapat aturan bahwa nilai 0 (nol) akan direpresentasikan dengan dua buah nilai, yaitu +0 (positif nol) dan -0 (negatif nol).
000…00011 = +3
000…00010 = +2
000…00001 = +1
000…00000 = +0
111…11111 = -0
111…11110  = -1
111…11101 = -2
111…11100 = -3
Dapat kita lihat dari aturan diatas, nilai +0 akan berpasangan dengan -0, +1 dengan -1, dan seterusnya. Ini menunjukkan bahwa negasi dari 0 adalah -0, negasi dari 1 adalah -1, dan seterusnya.
Terdapat kelemahan dalam aturan ini, yaitu ada nilai yang kurang benar sehingga diciptakannya aturan ke dua yaitu komplemen dua.
Komplemen dua mirip dengan komplemen satu, hanya saja dalam proses negasinya semua bit juga akan dibalik, sehingga tidak ada lagi rasa “bingung” merepresentasikan nilai +0 dan -0, karena hanya ada satu nilai 0 (nol), seperti berikut:
000…00011 = +3
000…00010 = +2
000…00001 = +1
000…00000 = 0
111…11111 = -1
111…11110 = -2
111…11101 = -3
111…11100 = -4
dari aturan di atas dapat kita lihat bahwa nilai 0 akan berpasangan dengan nilai -1, nilai +1 akan berpasangan dengan -2, dan seterusnya. Hal ini menunjukkan bahwa negasi dari 0 adalah -1, negasi dari +1 adalah -2, dan begitu seterusnya.
Sistem bilangan binari menggunakan basis (radix) 2 dan menggunakan dua macam simbol yaitu : 0 dan 1. Contoh bilangan binari yaitu : 1001 dapat diartikan dalam sistem bilangan desimal yaitu :
 
Position value sistem bilangan binari merupakan perpangkatan dari nilai basis yaitu perpangkatan nilai 2, seperti pada tabel berikut :


Atau dengan rumus :

Contoh :

Pertambahan Bilangan Binari
Pertambahan bilangan binari dilakukan dengan cara yang sama dengan pertambahan bilangan desimal. Dasar pertambahan untuk masing-masing digit bilangan binari adalah :

Contoh pertambahan bilangan binari :

Pengurangan Bilangan Binari
Pengurangan pada sistem bilangan binari dilakukan dengan cara yang sama pada sistem bilangan desimal. Dasar pengurangan untuk masing-masing digit bilangan adalah :

Contoh pengurangan pada sistem bilangan binari :

Pengurangan Dengan Komplemen (Complement)
Komplemen basis minus 1 (radix-minus-one complement)
Komplemen basis (radix complement)
Pada sistem bilangan desimal :
Kompelemen 9 (9s complement)
Komplemen 10 (10s complement)
Pada sistem bilangan binari :
Komplemen 1 (1s complement)
Komplemen 2 (2s complement)
Contoh pengurangan dengan komplemen 9 :

Komplemen 9 dari suatu sistem bilangan desimal dilakukan dengan mengurangkan angka 9 untuk masing-masing digit dalam bilangan pengurangan. Perhatikan, pada komplemen 9, digit paling ujung kiri dipindahkan untuk ditambahkan pada digit paling kanan.
Contoh pengurangan dengan komplemen 10 :

Komplemen 10 dari bilangan desimal adalah hasil komplemen 9 ditambah 1, misalnya komplemen 10 dari nilai 321 adalah 679 (atau dengan cara 1000-321 = 679). Pada komplemen 10, hasil digit paling ujung kiri dibuang (tidak dipergunakan).
Cara yang sama dapat dilakukn pada sistem bilangan binari.
Contoh pengurangan dengan komplemen 1 :

Komplemen 1 di sistem bilangan binari dilakukan dengan mengurangkan setiap bit dari nilai 1, atau dengan cara mengubah setiap bit 0 menjadi 1 dan bit 1 menjadi 0. Dengan komplemen 1, hasil digit paling kiri dipindahkan untuk ditambahkan pada bit paling kanan.
Contoh pengurangan dengan komplemen 2 :

Komplemen 2 adalah hasil dari komplemen 1 ditambah 1, misalnya komplemen 2 dari bilangan binari 10110 adalah 01010 (dari komplemen 1 yaitu 01001 ditambah 1). Dengan komplemen 2, hasil digit paling kiri dibuang (tidak digunakan).
Perkalian Bilangan Binari
Perkalian bilangan binari dilakukan dengan cara yang sama dengan perkalian pada sistem bilangan desimal. Dasar perkalian untuk masing-masing digit bilangan binari adalah :

Contoh perkalian bilangan binari :

Perhatikan, ada 2 keadaan dalam perkalian bilangan biner, jika pengali adalah bilangan 1, maka cukup disalin saja, jika pengali adalah bilangan 0, maka hasilnya semuanya 0.
Pembagian Bilangan Binari
Pembagian pada bilangan binari dilakukan dengan cara yang sama dengan pembagian bilangan desimal. Pembagian dengan 0 tidak mempunyai arti, sehingga dasar pembagian digit binari adalah :


 
 
Full Adder dan Half Adder

Full adder adalah  rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan sepenuhnya dari dua buah bilangan binary, yang masing-masing terdiri dari satu bit. Rangkaian ini memiliki tiga input dan dua buah output, salah satu input merupakan nilai dari pindahan penjumlahan, kemudian sama seperti pada half adder salah satu outputnya dipakai sebagai tempat nilai pindahan dan yang lain sebagai hasil dari penjumlahan.


Full Adder dapat digunakan untuk menjumlahkan bilangan-bilangan biner yang lebih dari 1bit. Penjumlahan bilangan-bilangan biner sama halnya dengan penjumlahan bilangan decimal dimana hasil penjumlahan tersebut terbagi menjadi 2bagian, yaitu SUMMARY (SUM) dan CARRY, apabila hasil penjumlahan pada suatu tingkat atau kolom melebihi nilai maksimumnya maka output CARRY akan berada pada keadaan logika.
Half Adder adalah rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan dari dua buah bilangan binary, yang masing-masing terdiri dari satu bit. Rangkaian ini memiliki dua input dan dua buah output, salah satu outputnya dipakai sebagai tempat nilai pindahan dan yang lain sebagai hasil dari penjumlahan.





Half Adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk operasi penjumlahan data bilangan biner sampai 1bit saja. Rangkaian Half Adder memiliki 2 terminal input untuk 2 variabel bilangan biner clan 2 terminal output, yaitu SUMMARY OUT (SUM) dan CARRY OUT (CARRY).
Berbicara tentang penambahan biner, gimana ya?
Konsepnya :
-          0 + 0 = 0
-          0 + 1 = 1
-          1 + 1 = 10
-          1 + 0 = 1
Contoh :
                1              1              1                          carry
1              1          1          1
                            1            1 +
1          0          0          1          0          hasil
Jadi, ketika inputnya ada 2 maka menggunakan half adder dan ketika inputnya ada 3 maka menggunakan full adder(3 input tersebut sudah termasuk carry).
Pengurangan biner adalah menjumlahkan input ke satu dengan komplemen input ke dua. (jika menghasilkan carry maka carry dibuang)
Contoh: (110100 – 100001)2
Jawab: Komplemenkan input ke dua sehingga:
1 1 0 1 0 0
0 1 1 1 1 1 + //jumlahkan dengan 2’s komplemen
1 0 1 0 0  1 1
1 0 0 0 0  0 0 – //kurangi agar tidak ada carry
             1 0 0  1 1
Komparasi adalah membandingkan dua buah nilai dan menentukan mana yang nilainya lebih besar, mana yangl ebih kecil dan apakah keduanya bernilai sama.
-          Magnitude comperator adalah rangkaian yang berfungsi menjalankan proses komperasi dan mengidikasi apakah A>B, A<B, A=B.
Prosesnya adalah misalkan A dan B adalah binary number dengan 4 digit, lalu tulis koefisien dari kedua number secara decending.
A= A3A2A1A0
B= B3B2B1B0
Namun ada syarat untuk membandingkan:
(A=B) = X3X2X1X0
(A>B) = A3B3’+X3A2B2’+X3X2A1B1’+X3X2X1A0B0
(A<B) = A3’B3+X3A2’B2+X3X2A1’B1’+X3X2X1A0’B0
Multiplexer adalah perangkat pemulih beberapa jalur data ke dalam astu jalur data untuk dikirim ke titik lain. Sedangkan fungsi dari multiplexer adalah sebagai data selector(pemilih data).





Fungsi encoder adalah mengubah bilangan desimal yang ditekan oada keyboard menjadi suatu kode biner(misal BCD). Intinya encoder akan merubah bahasa manusia ke bahasa mesin.
Fungsi decoder mengubah kode biner dari CPU menjadi kode khusus yang menyalakan ruas(segmen) yang tepat pada alat peraga sehingga lebih mudah dipahami user.
Contoh: Pengompresan dari bentuk visual (film) ke bentuk 3gp. Encoder berfungsi mengompres file, decoder berfungsi mengompres file agar dapat dibaca / dimainkan di Media Player

Senin, 21 Oktober 2013

KONVERSI DATA


Konversi Data



Bilangan Biner adalah bilangan yang hanya punya basis 2 atau bilangan basis 2 ,yaitu 0 dan 1, Bilangan Oktal adalah bilangan yang hanya punya basis 8 atau bilangan basis 8 , yaitu 0,……,7. Bilangan Desimal adalah bilangan yang hanya punya basis 10 atau bilangan basis 10 ,yaitu 0,…….9. Bilangan Hexadesimal adalah bilangan yang hanya punya basis 16 atau bilangan basis 16 ,yaitu 0,……..9 ,A ,B ,C ,D ,E ,F (A=10 ,B=11 ,C=12 ,D=13 ,E=14 ,F=15)
Konversi Bilangan adalah mengubah suatu sistem bilangan menjadi sistem bilangan lain.

a. Biner
Hampir semua sistem digital menggunakan sistem bilangan biner sebagai dasar sistem bilangan dari operasinya, meskipun sistem-sistem bilangan lain sering digunakan secara bersama-sama dengan biner. Dengan menggunakan 2 level yang ada pada sistem biner maka sangatlah mudah untuk mendesain rangkaian – rangkaian elektronik yang akurat dibandingkan dengan menggunakan 10 level yang ada pada sistem desimal.



Dalam sistem biner, hanya ada 2 simbol atau digit yaitu 0 dan 1 yang dikenal juga dengan system basis-2. Sistem biner ini dapat digunakan untuk menyatakan setiap kuantitas yang dapat dinyatakan dalam desimal atau sistem bilangan yang lainnya.
Tabel berikut menunjukkan urutan hitungan pada system bilangan biner.



Ada beberapa konversi bilangan pada bilangan biner, antara lain :
· Biner ke Oktal
Caranya mudah ,kita hanya menyekatnya atau mengelompokkan berisi 3 bit bilangan ,dalam bentuk bilangan oktal ,111 = 4+2+1 = 7 ,sistem oktal ini disebut sistem 421.
Contohnya
110011010(2) = 110 011 010 = 4+2+0 0+2+1 0+2+0 = 632(8)


· Biner ke Desimal
Kita hanya tinggal mengalikan setiap bitnya dengan 2n ,n = posisi bit ,MSB berarti pangkatnya paling besar , sedangkan LSB pangkatnya paling kecil atau = 0, lalu hasilnya dijumlahkan .
Contoh :
110011010(2) = (1×28) + (1×27) + (0×26) +(0×25) + (1×24) + (1×23) + (0×22) + (1×21) +(0×20) = 256 + 128 + 0 + 0 + 16 + 8 + 0 + 2 + 0 = 410(10)


· Biner ke Hexadesimal
Caranya mudah ,kita hanya menyekatnya atau mengelompokkan berisi 3 bit bilangan , alam bentuk bilangan oktal ,1111 = 8+4+2+1 = 15/F , sistem hexadesimal ini disebut sistem 8421.
Contoh :
10110011010(2) = 1101 1001 1010 = 8+4+0+1 8+0+0+1 8+0+2+0 = 13 9 10 = D9A(16)


b. Oktal
Ada beberapa konversi bilangan pada bilangan octal , antara lain :


· Oktal ke Desimal
Kita hanya tinggal mengalikan angka paling kiri dengan 8n , n adalah jumlah pangkaat tertinggi. MSB berarti pangkatnya paling besar sedangkan LSB pangkatnya paling kecil atau = 0, lalu hasilnya dijumlahkan .
Contoh :


678(8) = 6×82 7×81 8×80 = 6×64 + 7×8 + 8×1 = 384 + 56 + 8 = 440(10)


· Oktal ke Biner
Pada konversi bilangan oktal ke biner ini maksimal hanya angka misalnya 777(8) yang dapat langsung dikonversikan kebiner dengan cara sekat 7 = 111 , 7 = 111 , 7 = 111 jadi 777(8) =111111111(2) ,jika 777 keatas sudah tidak bisa menggunakan cara ini ,harus diubah kedesimal dahulu baru bisa langsung ke biner.
Contoh :
653(8) = ( dengan cara sekat langsung karena tidak ada angka yang >7 )
653(8) = 6 = 110 ,5 = 101 , 3 = 011,,,Jadi 653(8) = 110101011(2)
678(8) = ( langkah pertama harus dikonversikan terlebih dahulu ke desimal )
678(8) = 6×82 7×81 8×80 = 6×64 + 7×8 + 8×1 = 384 + 56 + 8 = 440(10)
440(10) = ( langkah kedua langsung mengubahnya kebiner )
440(10) = 440:2=220 sisa 0
220:2=110 sisa 0
110:2=55 sisa 0
55:2=27 sisa 1
27:2=13 sisa 1
13:2=6 sisa 1
6:2=3 sisa 0
3:2=1 sisa 1
1:2=0 sisa 1
dibaca dari bawah keatas ,jadi 440(10) = 110111000(2)


Jadi , 678(8) = 110111000(2)




· Oktal ke Hexadesimal
Caranya kita harus mengubahnya ke bilangan desimal dahulu baru dari desimal kiata ubah ke hexadesimal .
Contoh :
678(8) = 6×82 7×81 8×80 = 6×64 + 7×8 + 8×1 = 384 + 56 + 8 = 440(10)
440(10) = 440:16= 27 sisa 8
27:16= 1 sisa 11/B
1:16= 0 sisa 1
dibaca dari bawah keatas Jadi, 440(10) = 1B8(16)


Jadi ,hasil dari 678(8) = 1B8(16)






c. Desimal
Sistem desimal tersusun atas 10 angka atau simbol, yang dikenal dengan digit. Ke-10 simbol ini adalah 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Sistem desimal juga disebut sistem basis-10, karena mempunyai 10 digit. Kenyataannya, kata ”digit” adalah kata latin yang berarti ”jari-jari”.
Sistem desimal adalah suatu sistem nilai posisional di mana nilai dari suatu digit tergantung kepada posisinya. Misalnya perhatikanlah bilangan desimal 634 ini artinya digit 4 sesungguhnya menyatakan 4 satuan. 3 menyatakan 3 puluhan dan 6 menyatakan 6 ratusan. Ringkasnya, 6 merupakan yang paling berbobot dari ketiga digit, dikenal sebagai Most Significant Digit (MSD). 4 bobotnya paling kecil dan disebut Least Significant Digit (LSD). Perhatikan contoh lain, 75.25. Bilangan ini sesungguhnya sama dengan tujuh puluh plus lima satuan plus dua persepuluh plus


Ada beberapa konversi bilangan pada bilangan desimal , antara lain :


· Desimal ke Biner
Kita hanya tinggal membagi angka desimalnya dengan angka 2 dan hasilnya tidak ada koma ,tapi kita tulis saja berapa sisanya .
Contoh :
440(10) = 440:2=220 sisa 0
220:2=110 sisa 0
110:2=55 sisa 0
55:2=27 sisa 1
27:2=13 sisa 1
13:2=6 sisa 1
6:2=3 sisa 0
3:2=1 sisa 1
1:2=0 sisa 1
dibaca dari bawah keatas ,jadi 440(10) = 110111000(2)


· Desimal ke Oktal
Kita hanya tinggal membagi angka desimalnya dengan angka 8 dan hasilnya tidak ada koma ,tapi kita tulis saja berapa sisanya.
Contoh :
440(10) = 440:8= 55 sisa 0
55 :8= 6 sisa 7
7 :8= 0 sisa 7
dibaca dari bawah keatas ,jadi 440(10) = 770(8)


· Desimal ke Hexadesimal
Caranya yaitu hanya tinggal membagi angka desimalnya dengan angka 16 dan hasilnya tidak ada koma ,tapi kita tulis saja berapa sisanya.
Contoh :
440(10) = 440:16= 27 sisa 8
27:16= 1 sisa 11/B
1:16= 0 sisa 1
dibaca dari bawah keatas Jadi, 440(10) = 1B8(16)


d. Hexadesimal
Ada beberapa konversi bilangan pada bilangan desimal , antara lain :


· Hexadesimal ke Biner
Kita hanya tinggal menyekat 1 bilangan Hexadesimal lalu mengubahnya ke biner.
Contoh :
B4645(16) = B 4 6 4 5 = 1011 0100 0110 0100 0101(2)


· Hexadesimal ke Desimal
Kalikan setiap bit bilangannya dengan 16n , n adalah nilai pangkat tertinggi MSB berarti pangkatnya paling besar sedangkan LSB pangkatnya paling kecil atau = 0, hasilnya lalu jumlahkan .
Contoh :
1B8(16) = 1×162+Bx161+8×160 =256+176+8=440(10)


· Hexadesimal ke Oktal


Bilangan Hexa tidak bisa langsung dikonversikan ke oktal ,ubah dulu ke desimal lalu dari desimal bisa langsung dikonversikan ke oktal.


Contoh :
1B8(16) = 1×162+Bx161+8×160 =256+176+8=440(10)
440(10) = 440:8= 55 sisa 0
55 :8= 6 sisa 7
7 :8= 0 sisa 7
dibaca dari bawah keatas ,jadi 440(10) = 770(8)
Jadi , 1B8(16) = 770(8)

Sabtu, 12 Oktober 2013

BAGIAN BAGIAN MOTHERBOARD BESERTA FUNGSINYA

MOTHERBOARD
Motherboard atau disebut juga dengan Papan Induk Motherboard
merupakan komponen utama dari sebuah PC, karena pada Motherboard-lah
semua komponen PC anda akan disatukan. Bentuk motherboard seperti
sebuah papan sirkuit elektronik. Motherboard merupakan tempat berlalu
lalangnya data. Motherboard menghubungkan semua peralatan komputer dan
membuatnya bekerja sama sehingga komputer berjalan dengan lancar.
Salah satu bentuk motherboard

motherboard 
Komponen-Komponen Motherboard dan fungsinya
  1. Konektor ATX (Moherboard power supply connector) berfungsi untuk menghubungkan power supply dengan motherboard
  2. Processor Support (slot processor) berfungsi sebagai wadah atau tempat memasang chip processor
  3. Processor power supply connector berfungsi untuk menghubungkan 4 pin kabel power supply ke MOTHERBOARD
  4. RAM Connectors berfungsi untk menancapkan RAM CARD / MEMORY CARD
  5. chipset adalah sebuah cirkuit electronik ynag berfungsi untuk mengkoordinasi transfer data yang ada di dalam computer
  6. AGP berfungsi untuk menancapkan VGA card
  7. PCI EXTENSION CARD berfungsi untuk menancapkan komponen-komponen tambahan seperti LAN CARD dan SOUND CARD
  8. Slot IDE I (Primary) berfungsi untuk menghububgkn hard disk dengan motherboard
  9. Slot IDE II (Secondary) berfungsi untuk menghubungkan CD ROM / DVD ROM dengan Motherboard
  10. Slot FDD berfungsi untuk menghubungkan floppy disk dengan Motherboard
  11. Baterry C_MOS (complementary metal-oxide semiconductor) berfungsi sebagai syncronisasi signal system real time clock (RTC)
  12. BIOS (Basic Input/Output System) adalah sebuah program yang berfungsi interface antara sistem operasi dengan motherboard 
  13.  Port I/O (Input Output Connector)
  • Port Mouse type PS2 berfungsi untuk memasang mouse
  • Port keyboard type PS2 berfungsi untuk memasang keyboard 
  • Port Parallel berfungsi untuk memasang printer 
  • Port USB berfungsi untuk memasang perangkat tambahan jenis USB 
  • Port series berfungsi untuk menghubungkan monitor yang menggunakan VGA onboard
  • Port VGA berfungsi untuk menghubungkan monitor yang menggunakan VGA card 
  • Port LAN berfungsi untuk memasang konector RJ 45 
  • Port Sound berfungsi untuk memasang perangkat tambahan seperti headset , speaker , dan microphon